Using Dataiku
- I'm creating a python function endpoint with this script: And I don't know how to deal with this error: Dev server deployment FAILED Failed to initiate function server : <class 'Exception'> : Default …Last answer by Velichka
Hello all,
i am still looking for a solution to my problem. I have the following Jupyter Notebook:
import dataiku
import pickle
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import dataikuapi
def load_data(folder_name="Recommender"):
managed_folder = dataiku.Folder(folder_name)
with managed_folder.get_download_stream("cosine_similarity.pkl") as stream:
cosine_sim = pickle.load(stream)
with managed_folder.get_download_stream("tfidf_vectorizer.pkl") as stream:
vectorizer = pickle.load(stream)
with managed_folder.get_download_stream("tfidf_matrix.pkl") as stream:
X_tfidf = pickle.load(stream)
sachnummer = dataiku.Dataset("LTM_prep")
df = sachnummer.get_dataframe()
df.drop(['lieferant_name', 'lieferant_ort', 'LIEFERANT_NAME_ORT', 'LT_GEBINDE_NUMMER', 'MDI'], axis=1, inplace=True)
return cosine_sim, vectorizer, X_tfidf, df
def recommend_filtered1(input_bennenung, vectorizer, X_tfidf, df, top_n=10):
try:
if not input_bennenung:
return {"error": "Die Eingabe-Benennung darf nicht leer sein."}
input_bennenung = input_bennenung.upper()
input_vector = vectorizer.transform([input_bennenung])
similarities = cosine_similarity(input_vector, X_tfidf).flatten()
top_indices = similarities.argsort()[-top_n:][::-1]
recommendations = [
{"test": df.iloc[idx]['test'],
"test2": df.iloc[idx]['test2'],
"SIMILARITY_SCORE": round(similarities[idx], 2)}
for idx in top_indices if similarities[idx] > 0
]
return recommendations if recommendations else {"message": "Keine ähnlichen Benennungen gefunden."}
except Exception as e:
return {"error": f"Fehler: {str(e)}"}
def recommend_from_input(input_bennenung):
folder_name = "Recommender"
if not input_bennenung:
return {"error": "Fehlender Parameter 'input_bennenung'"}
try:
# Lade alle benötigten Objekte
cosine_sim, vectorizer, X_tfidf, df = load_data(folder_name)
# Empfehlung berechnen
return recommend_filtered1(input_bennenung, vectorizer, X_tfidf, df)
except Exception as e:
return {"error": f"Fehler beim Laden der Daten oder der Empfehlung: {str(e)}"}and want to call the method
recommend_from_input
from it. I am in the API Designer. I have a managed folder called "Recommender," which I can also see in the Flow. The structure im Folder isUnter Folder Settings i see type is Amazon S3 and i have a setted connection and see also the path in bucket. So when i call def recommend_from_input(input_bennenung): return input_bennenung in the api designer code section with the test query
{
"input_bennenung": "Stern"
}there are no errors and i get "Stern back". So now i just pasted my notebook code in the api designer code Section and when i run it there is a error:
Result:
{"error":"Fehler beim Laden der Daten oder der Empfehlung: Default project key is not specified (no DKU_CURRENT_PROJECT_KEY in env)"}
In the logs are no errors only info and debug.
I would appreciate any help. I have already read the documentation on Exposing Python Functions, but I still don't know where my mistake is.
- I can see this information in the timeline in the UI, but doesn't seem to be in the data returned by: ar = client.get_artifact('ar.26421') print(ar.get_definition().get_raw()) Operating system used: W…Last answer by
- Hello everyone, I am working on Dataiku, primarily using their API. I have trained my model and would like to retrieve the dataset that was used for testing via the API methods. Despite trying several…Last answer by
- I am trying to a create a logic to validate the governance approval for a particular bundle of a project. Input params: PROJECT_KEY, BUNDLE_ID The python code should be able to validate the governance…
- I've tried using dataiku managed instance from local workstation using dataiku API client v13.1.4 and had trouble accessing projects in the machine. import dataikuapi import random import requests req…Solution by
- Hi, It appears that the settings.add_exposed_object() method is undocumented. So documenting here few examples for the benefit of others: import dataiku client = dataiku.api_client() project = client.…
- Operating system used: Dataiku Operating system used: Dataiku Operating system used: DataikuLast answer by
- Two questions: 1. Will an exception, raised during execution of API service code, always result in a response with a 500 HTTP status code? 2. Aside from that, errors can occur outside of API service c…Solution by
- How to rename a saved model using API?Solution by