Using Dataiku
Sort by:
1 - 10 of
76
1 - 10 of
761
Hi @tanguy
,
There is example code in the link I provided above (see here).
I've added the code below for reference:
import dataiku # if using API from inside DSS client = dataiku.api_client() project = client.get_project("PROJECT_ID") # 1. Create DSS Saved Model saved_model = project.create_mlflow_pyfunc_model(name, prediction_type) # 2. Load the MLflow Model as a new version of DSS Saved Model ## either from DSS host local filesystem: mlflow_version = saved_model.import_mlflow_version_from_path("version_id", model_directory, 'code-environment-to-use') ## or from a DSS managed folder: mlflow_version = saved_model.import_mlflow_version_from_managed_folder('version_id', 'managed_folder_id', path_of_model, 'code-environment-to-use') # 3. Evaluate the saved model version # (Optional, only for regression or classification models with tabular input data, mandatory to have access to the saved model performance tab) mlflow_version.set_core_metadata(target_column, classes, evaluation_dataset_name) mlflow_version.evaluate(evaluation_dataset_name)
Thanks,
Jordan
This website uses cookies. By clicking OK, you consent to the use of cookies. Read our cookie policy.
AcceptReject