Sign up to take part
Registered users can ask their own questions, contribute to discussions, and be part of the Community!
Added on May 17, 2021 3:55PM
Likes: 5
Replies: 0
Team members:
Modhar Khan - Head of People Analytics
Richard De Moucheron – Director Total Talent Management
Wesley Noah – Global Compliance Managing Counsel Operations
Sejal Sagar Mehta – Application Engineer
Sudeep Goswami – HR Applications Manager
Ryan Stewart – Global Talent Acquisition Planning Manager
Sonia Badilla - Talent Acquisition Manager Western Hem
Philip Irele Evbomoen - Talent Acquisition Manager - Eastern Hem
Beth Kremer – North America Recruiting Manager
Zhi Chi – Data Engineer HRIT
Simon Spero (Dataiku) - Senior Enterprise Customer Success Manager
Country:
United States
Organization:
SLB
Description:
SLB is a technology company that partners with customers to access energy. Our people, representing over 160 nationalities, are providing leading digital solutions and deploying innovative technologies to enable performance and sustainability for the global energy industry. With expertise in more than 120 countries, we collaborate to create technology that unlocks access to energy for the benefit of all.
Awards Categories:
Every year, more than 500k candidates apply to SLB across the globe. With our PeopleFirst Strategy, we made a commitment towards improving Diversity & Inclusion in everything we do as a company.
Our Talent Acquisition team had stretched investment and resources to vet these candidates, match them to business demand, and do all of that efficiently with the utmost compliance.
The challenge in using AI & ML was to ensure that it will not have any negative impact on the candidates and to continuously monitor such models that can be vetted and improved, in case they generate any bias against any class. After vetting many ready-made solutions, we found that they do not cover the complexities in 80+ countries, nor the number of profiles we hire for.
Making the data ready for exploration was a complex process as it involved many internal and external data sources, as well as numerous engineering steps and feature generations. With Dataiku, we were able to do that at scale quickly and in a quality manner.
See example of a project showing Dataiku’s ability to handle complexity at scale:
From advanced embedding models for text and features extraction to probabilistic predictive workflow, Dataiku was able to handle customizations needed in our ML workflows seamlessly.
The API deployer proved to be an efficient and cost effective feature, without requiring to add additional infrastructure in the pipeline.
Recruiters were able to interact with the predictions and provide feedback in a true collaborative manner.
Pilot results (Q2-Q3 2021):