Error using pyspark .rdd.map (different Python version)
Hi,
i am seeing the below error after running the code:
fltmap_rdd = pyspark_test2.select('count').rdd.map(lambda x: x)
print(fltmap_rdd.collect())
can anyone please help why this error is thrown
error :
Py4JJavaError Traceback (most recent call last) <ipython-input-66-1bc83d39174a> in <module> 1 #rdd2=pyspark_test2.rdd.map(lambda x: x[0]) ----> 2 print(fltmap_rdd.collect()) /usr/hdp/current/spark2-client/python/pyspark/rdd.py in collect(self) 829 """ 830 with SCCallSiteSync(self.context) as css: --> 831 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) 832 return list(_load_from_socket(sock_info, self._jrdd_deserializer)) 833 /usr/hdp/current/spark2-client/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args) 1255 answer = self.gateway_client.send_command(command) 1256 return_value = get_return_value( -> 1257 answer, self.gateway_client, self.target_id, self.name) 1258 1259 for temp_arg in temp_args: /usr/hdp/current/spark2-client/python/pyspark/sql/utils.py in deco(*a, **kw) 61 def deco(*a, **kw): 62 try: ---> 63 return f(*a, **kw) 64 except py4j.protocol.Py4JJavaError as e: 65 s = e.java_exception.toString() /usr/hdp/current/spark2-client/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name) 326 raise Py4JJavaError( 327 "An error occurred while calling {0}{1}{2}.\n". --> 328 format(target_id, ".", name), value) 329 else: 330 raise Py4JError( Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 67.0 failed 4 times, most recent failure: Lost task 1.3 in stage 67.0 (TID 733, hklpaphas072.global.standardchartered.com, executor 14): org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "/usr/hdp/current/spark2-client/python/pyspark/worker.py", line 176, in main ("%d.%d" % sys.version_info[:2], version)) Exception: Python in worker has different version 2.7 than that in driver 3.6, PySpark cannot run with different minor versions.Please check environment variables PYSPARK_PYTHON and PYSPARK_DRIVER_PYTHON are correctly set. at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298) at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:438) at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:421) at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator$class.foreach(Iterator.scala:893) at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310) at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302) at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289) at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28) at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939) at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:109) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1587) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1586) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1586) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1820) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1769) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1758) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:363) at org.apache.spark.rdd.RDD.collect(RDD.scala:938) at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:162) at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala) at sun.reflect.GeneratedMethodAccessor123.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:238) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "/usr/hdp/current/spark2-client/python/pyspark/worker.py", line 176, in main ("%d.%d" % sys.version_info[:2], version)) Exception: Python in worker has different version 2.7 than that in driver 3.6, PySpark cannot run with different minor versions.Please check environment variables PYSPARK_PYTHON and PYSPARK_DRIVER_PYTHON are correctly set. at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298) at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:438) at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:421) at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator$class.foreach(Iterator.scala:893) at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310) at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302) at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289) at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28) at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939) at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:109) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ... 1 more
(Topic title edited by moderator to be more descriptive. Original title "pyspark")
Best Answer
-
Hi,
Spark is complaining that the cluster nodes are using python2.7 while your DSS node is using python3.6. You need to create a code env that uses python2.7 and run your notebook on it.
Answers
-
Thanks for the response, i got the answer from you. also i have another question referring the above code, if i need to work on any aggregation/groups in Pyspark, which method is suitable for performance/efficiency, is it map/flatmap using RDD or PartitionBy.
which is better?
-
you seldom need to go to low-level stuff like map/flatmap, and anyway other Spark commands, including SparkSQL, will just translate to these low-level API.
-
can we Judge which method is faster out of these two?