Survey banner
Switching to Dataiku - a new area to help users who are transitioning from other tools and diving into Dataiku! CHECK IT OUT

Custom python model with library editor

Level 1
Custom python model with library editor


I’m trying to define a custom Python model that should be fitted adjusting for the variable "exposure". The code runs without an error in the notebook, but this error message occurs when the model is fitted in the visual analyses. 

 "Failed to train : <class 'IndexError'> : only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices. "

The code in the library editor looks like this: 

class Poisson_gbrt(BaseEstimator): 
    def __init__(self):
        self.model = Pipeline([
    def fit(self,X,y,regressor__sample_weight=None):,y,regressor__sample_weight=X["Exposure"]) 
        return None 
    def predict(self, X):
        return self.model.predict(X)




0 Kudos
1 Reply

Hi @Odin ,

The error suggests you are passing X["Exposure"] which is not what HistGradientBoostingRegressor you could try to convert this to numpy array instead :

exposure_weights = X["Exposure"].to_numpy()


0 Kudos