not able to merge spark scala code in spark pipeline

AshishM
AshishM Registered Posts: 4 ✭✭✭✭
edited July 18 in Setup & Configuration

we are merging our spark scala code with spark pipeline, however if i run the code step individually it runs fine (in both function mode / free mode) but when it is been merged in spark pipeline it give error

java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Driver stacktrace:, caused by: ClassNotFoundException: CustomScalaRecipe$$anonfun$1

scala code:


import org.apache.spark.sql.functions._

// Recipe inputs
val iups_prepared_joined_by_time_cell_joined = inputDatasets("iups_prepared_joined_by_time_cell_joined")


def redaction(data:String, d_cnt: Int): String = {

var data_trim = "" ;
if (data.isEmpty || data =="" || data == null){
return data ;
}else {
data_trim = data.trim() ;
}

if (d_cnt == 1){
var data_length = data_trim.length();
return data_trim.replaceAll(data_trim, "*"*data_length)
}
else if (d_cnt> 5){
return data_trim
}
else {
val redac_length = 6-d_cnt
val length_r = Seq(redac_length, data_trim.length()).min
return data_trim.slice(0,data_trim.length()-length_r) + "*"*(length_r+3)
}

}

val redaction_udf = udf((data: String,d_cnt:Int) => redaction(data,d_cnt));

val iups_pre_anonymized = iups_prepared_joined_by_time_cell_joined.withColumn("price_plan", when(col("price_plan").isNull, lit(null)).otherwise(redaction_udf(col("price_plan"),col("price_plan_distinct"))))
// Recipe outputs

Map("iups_pre_anonymized" -> iups_pre_anonymized)

Tagged:

Best Answer

  • AdrienL
    AdrienL Dataiker, Alpha Tester Posts: 196 Dataiker
    Answer ✓

    Hello,

    Thanks for reporting this, it seems to be a bug in the way spark pipelines and spark serialization work, I'll check to see if we can fix that in a future DSS version.

    In the meantime, you can workaround it by either:

    • (Simplest) disabling pipelining for this recipe, in the recipe's Advanced tab
    • Converting the UDF to sparkSQL (a bit difficult for your use case)
    • Compiling your UDF outside of DSS and place the resulting jar in <DATA_DIR>/lib/java, and call the UDF from your code

    Best

Answers

Setup Info
    Tags
      Help me…