Defect Detection - Watch on Demand

1 min read 7 2 1,921

Watch @AaronCrouch (Data Analytics Manager, Atlantic Plant Maintenance) present his Dataiku DSS project aimed at preventing human injuries!

Key takeaways:

  • Measure success to convince business stakeholders,
  • Start with a True/False scenario, e.g. whether a job will have a defect rather than how many,
  • Consult legal on possibly protected information,
  • Use Partial Dependence to drive business decisions.

Presentation abstract:

Aaron Crouch (Data Analytics Manager, Atlantic Plant Maintenance) will share learnings from developing a project in Dataiku DSS to flag jobs where a safety or quality defect is likely to occur. He will walk you through how he and his team joined together data from various sources, and built a machine learning algorithm to predict injuries before they occur.

The model has an 85% accuracy in predicting which jobs will have an incident before the job starts. Outcomes include an intervention plan for job sites deemed high risk, and the team is now working on how to measure effectiveness of this plan.

Aaron Profile.png

Aaron Crouch is the Data Analytics Manager for Atlantic Plant Maintenance (a fully owned affiliate of GE). He has been working with data for over 15 years, and with Dataiku for a year and a half.



PS: if you're interested in presenting your Dataiku project at a future event, please let us know!