

Class 3: Data Preparation

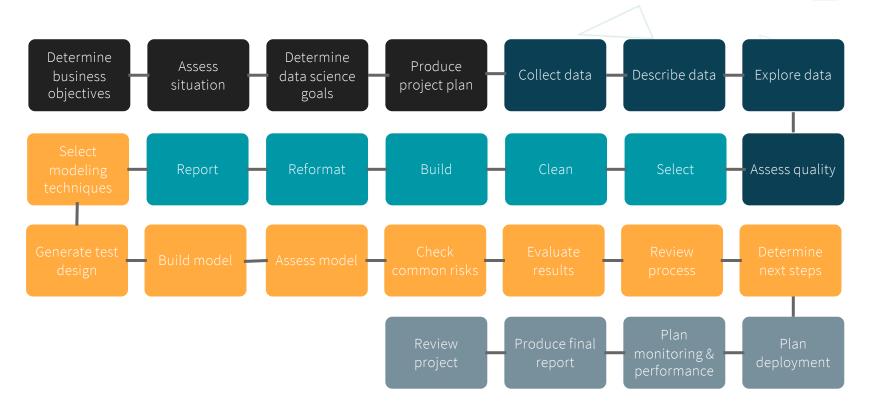
January 27nd, 2020

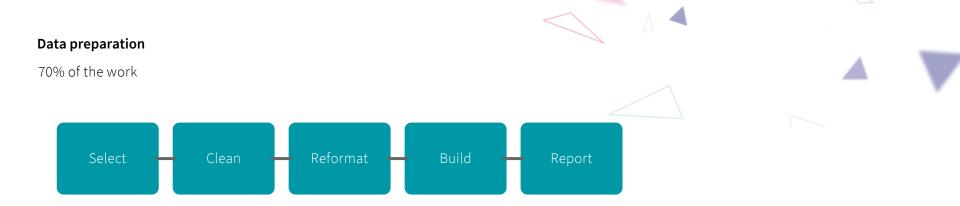
7 steps of a data projects

The Data Science Workflow

Advanced version of the workflow

The Data Science Workflow





Different Types of Data

Different types of Data

Definitions

Data stored with clearly defined data types whose pattern makes them easily searchable and linkable - most often tabular format Examples:

- Database with columns for name, phone number etc
- XLS, SQL, CSV

Unstructured

Data is not structured via pre-defined data models or schema.

Examples:

- Text files
- Websites and social media
- Audio, pictures

Different types of Data

Structured data

${f A}$ Categorical

Data can be one of several categories

Examples:

- Gender
- Nationality
- Hair color

Numerical

Data is a number

Examples:

- Age
- Weight
- Salary

I Text

Data is free-form text

Examples:

- Tweets
- Documents
- Business name

+ semi-structured data: json

Different type of structured data

Examples

Eye Color (e.g. Blue)

Height (e.g. 170 cm)

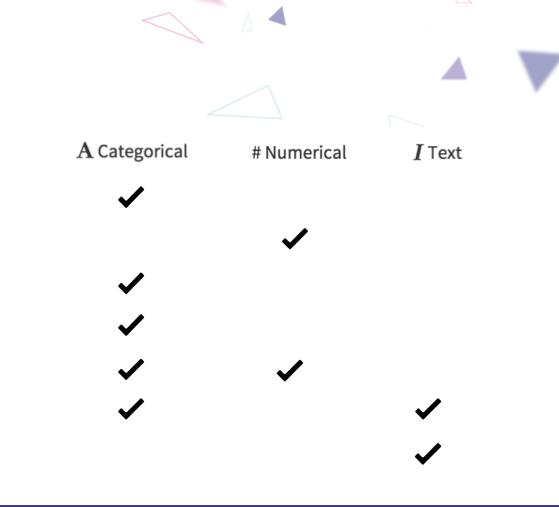
Country of Birth (e.g. France)

Postal Code (e.g. 75001)

Date (e.g. Wednesday, 15 Jan 1976)

Address (e.g. 10 Rue Saint Martin, Paris)

Curriculum Vitae



Handling Missing value

What to do with missing values?

id	Amount_Requested	Loan_Purpose	Loan_Length	Status	Debt_To_Income_Ratio 👻	Home_Ownership	FICO_Range	City
string	string	string	string	string	string	string	string	string
Integer	Decimal	Text	Text	Text	Text	Text	Text	Text
81174	20.000	debt_consolidation	36 months	accepted	14.90%	MORTAGE	735-739	Paris
99592	19200	debt_consolidation		accepted	28.36%	ORTGAGE	715-719	Paris
80059	35000	debt_consolidation	60 months	accepted	0.2381	ORTGAGE	690-694	Lyon
15825	10000	debt_consolidation	36 months	accepted	0.1430	MORTGAGE	695-699	Londres
33182	12000	credit_card	36 months	accepted	18.78%	RENT	695-699	Marseille
62403	6000	other		accepted	20.05%	OWN	670-674	Nice
48808	10000	debt_consolidation	36 month	accepted	26.09%	RENT	720-724	London
22090	33500	credit_card	60 months	accepted	14.70%	MOTGAGE	705-709	Aix-en-Proven
76404	14675	credit_card	36 months	accepted	26.92%	RENT	685-689	Marseille
15867	7000	credit_card		accepted	7.10%	RENT	715-719	Marseille
94971	2000	moving	36 months	accepted	10.29%	RENT	670-674	aix-en-proven
36911	10625	debt_consolidation	36 months	accepted	12.54%	MORTGAGE	665-669	Paris
41200	28000	debt_consolidation	60 months	accepted	13.07%	MORTGAGE	670-674	Aix en Provene
83869	35000	debt_consolidation	36 months	pending	20.46pct	RENT	735-739	Paris

Drop values

Delete all data from any participant with missing values

Loan_Purpose	Loan_Length	Status	Debt_To_Income_Ratio
Text	Text	Text	Text
debt_consolidation	36 months	accepted	14.90%
debt_consolidation		accepted	28.36%
debt_consolidation	60 months	accepted	0.2381

Few Warnings:

- Be sure your sample is **large enough**, then you likely can drop data without substantial loss of statistical power.
- Be sure **data is not missing at Random**: There is a pattern in the missing data that affect your primary dependent variables.

For example, lower-income participants are less likely to respond income column.

Imputation

Replacing missing values with substitute values.

Method #1: Common Value

For Number:

- Average
- Median
- Constant Value

For Category:

- Treat like the category « Empty »
- Most frequent value
- A constant value

Method #2: Educated Guess

Infer a missing value:

- If Age is lower than 20, Income is likely to be 0
- If living in a house in a rich city: income is likely to be higher than average
- Nb. of child is likely to not be 0 if age is high and situation not married

Method #3: Sub-Model

Create a specific model of machine learning to predict the missing (Regression, Classification)

Example

How to handle the missing data in this doc?

Adress	SPCategory	City	Birth_date	Income
Text	Natural lang.	Text	Date (unparsed)	Integer
48238 Ella Manor	Intermediate occupations	Vinniestad	4/20/84	64014
1377 Bahringer Street	Lower supervisory and technical occupations	Gladysport	7/1/83	33274
739 Bashirian Burg	Lower managerial and professional occupations	West Maximo	11/26/94	
969 Sandy Mount St.	Intermediate occupations	North Porterbury	8/24/60	27232
454 Walter Stream St.	Small employers and own account workers	North Angelica	2/18/90	64851
2311 Connor Views	Intermediate occupations	North Nelshaven	12/21/38	48970
689 Schmitt Rapids	Small employers and own account workers	North Esteban	2/4/83	40529
9147 Bernier Common Ave.	Higher managerial and professional occupations	Carrollton	11/29/95	
985 Hodkiewicz Courts Suite 951	Lower managerial and professional occupations	East Howardberg	12/9/54	
05004 Arlo Oval	Small employers and own account workers	South Lempiland	3/24/44	

Not OK

- Drop Rows
- Average

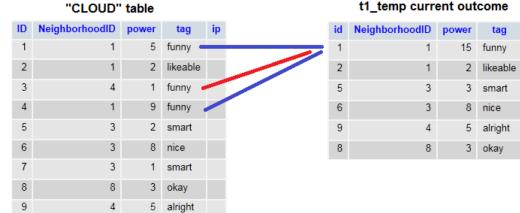
Better :

- Educated guess from SPCategory
- Sub-prediction Model

Data

Group by operations

Definition



t1_temp current outcome

Δ

ip

Aggregate data from an entity

How can you aggregate this dataset?

↓≟_ Client_ID	QUANTITY	SALES_VALUE	STORE_ID	RETAIL_DISC	Product_Category
Integer	Integer	Decimal	Integer	Decimal	Text
40	1	0.99	406	0.0	CANDY - CHECKLANE
40	1	2.49	406	0.0	DISPOSIBLE FOILWARE
40	1	0.99	406	0.0	CANDY - CHECKLANE
41	1	3.5	330	-0.49	DEODORANTS
41	1	0.99	295	0.0	CANDY - CHECKLANE
42	2	7.38	380	0.0	CIGARETTES
42	1	1.99	380	0.0	HARDWARE SUPPLIES
43	1	0.6	345	0.0	CANDY - CHECKLANE
43	1	0.42	345	0.0	BABY FOODS
44	1	1.99	297	0.0	CANDY - PACKAGED
45	1	4.99	300	0.0	SINUS AND ALLERGY
45	1	4.99	300	0.0	SINUS AND ALLERGY
45	1	4.67	300	-0.52	SINUS AND ALLERGY
45	1	1.99	300	0.0	DEODORANTS

Aggregate data from an entity

How can you aggregate this dataset?

↓≟ Client_ID	QUANTITY	SALES_VALUE	STORE_ID	RETAIL_DISC	Product_Category
Integer	Integer	Decimal	Integer	Decimal	Text
40	1	0.99	406	0.0	CANDY - CHECKLANE
40	1	2.49	406	0.0	DISPOSIBLE FOILWARE
40	1	0.99	406	0.0	CANDY - CHECKLANE
41	1	3.5	330	-0.49	DEODORANTS
41	1	0.99	295	0.0	CANDY - CHECKLANE
42	2	7.38	380	0.0	CIGARETTES
42	1	1.99	380	0.0	HARDWARE SUPPLIES
43	1	0.6	345	0.0	CANDY - CHECKLANE
43	1	0.42	345	0.0	BABY FOODS
44	1	1.99	297	0.0	CANDY - PACKAGED
45	1	4.99	300	0.0	SINUS AND ALLERGY
45	1	4.99	300	0.0	SINUS AND ALLERGY
45	1	4.67	300	-0.52	SINUS AND ALLERGY
45	1	1.99	300	0.0	DEODORANTS

Group By Options:

For Number:

- Average
- Sum
- Minimum and Maximum
- Standard Deviation

For Category and Number:

- Count of Value
- Count of Distinct Value
- First and Last Value
- Most Frequent

Result

↓≟ Client_ID	QUANTITY	SALES_VALUE	STORE_ID	RETAIL_DISC	Product_Category
Integer	Integer	Decimal	Integer	Decimal	Text
40	1	0.99	406	0.0	CANDY - CHECKLANE
40	1	2.49	406	0.0	DISPOSIBLE FOILWARE
40	1	0.99	406	0.0	CANDY - CHECKLANE
41	1	3.5	330	-0.49	DEODORANTS
41	1	0.99	295	0.0	CANDY - CHECKLANE
42	2	7.38	380	0.0	CIGARETTES
42	1	1.99	380	0.0	HARDWARE SUPPLIES
43	1	0.6	345	0.0	CANDY - CHECKLANE
43	1	0.42	345	0.0	BABY FOODS
44	1	1.99	297	0.0	CANDY - PACKAGED
45	1	4.99	300	0.0	SINUS AND ALLERGY

Client_ID	QUANTITY_s	SALES_VALUE_max	SALES_VALUE_avg	STORE_ID_distinct	RETAIL_DISC_count	RETAIL_DISC_sum	Product_Category_distinct
bigint	bigint	double	double	bigint	bigint	double	bigint
Integer	Integer	Decimal	Decimal	Integer	Integer	Decimal	Integer
40	710	39.99	5.025763546797998	6	609	-227.90000000000003	48
41	62	7.99	3.3271186440677973	2	59	-27.5499999999999997	13
42	178	10.58	2.32936363636363637	1	110	-41.6499999999999999	16
43	190	67.47	2.688385093167706	1	161	-22.0699999999999997	18
44	14	9.88	3.8776923076923087	4	13	-2.16	8
45	70	9.99	4.443428571428575	2	70	-8.79999999999999999	17

Reminder: Dummification & Rescaling

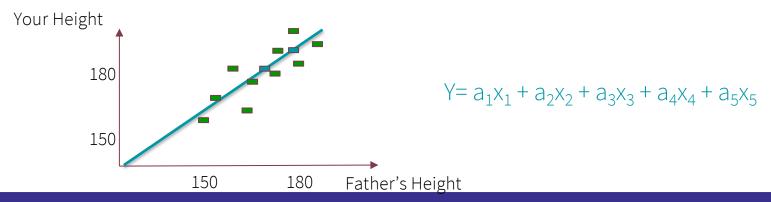
Dummification & Rescaling: the issue

The specificity of your data can create bias in your model

- Some data is in a textual or numerical format but should be understood as a category by your model
- This also allows you to use non numerical data in a linear model

> Create a dummy variable that corresponds to these categories: 0-1 for linear model

- Your numerical data can be distributed in a way that will be misunderstood by your model
 - > Change the values to rearrange them on a scale



Dummification for linear models

For categorical variables

Client ID		Product_Category
bigint		string
Integer		Text
	1000	
	1060	BATTERIES
	1916	SOAP - LIQUID & BAR
	718	CANDY - PACKAGED
	718	CANDY - PACKAGED
	293	EASTER
	293	CANDY - PACKAGED

Client_ID	BATTERIES	SOAP - LIQUID & BAR	CANDY - PACKAGED	EASTER	HAIR CARE PRODUCTS
bigint	bigint	bigint	bigint	bigint	bigint
Integer	Integer	Integer	Integer	Integer	Integer
1060	1	0	0	0	0
1916	0	1	0	0	0
718	0	0	1	0	0
718	0	0	1	0	0
293	0	0	0	1	0
293	0	0	1	0	0

Then your formula will look like this: $Y = a_{batteries}x_1 + a_{Soap}x_2 + a_{Candy}x_3...$

And $X_{1}, X_{2}, X_{3...}$ are either 0 or 1

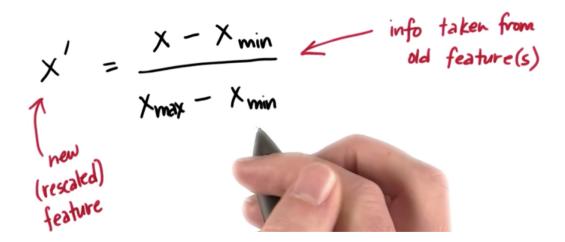
Rescaling for numerical variables

LastName	First_Name	nb_childs	Income	
string	string	string	string	
Text	Text	Integer	Integer	
Rosenbaum	Rosalind	1		28114
Stamm	Brett	3		47901
White	Verla	1		25700
Lindgren	David	1		18305
Brakus	Darryl			37341
Robel	Lilyan	0		31194

Without rescaling your formula will look like this: $Y_{rosalindrosenbaum} = a_{income} *28114 + a_{Child} *1...$

Feature scaling is a method used to standardize the range of independent variables

Example of Rescaling – Min-Max Rescaling



Questions?

Hands-On