Hi Vincent,
One way to do it is to use a Custom Python Script in Analyze. You can easily implement your logic this way. For example, if you want to test for specific values in a string, you could do the following:
import json
def process(row):
# Initialize counters
_uppers = 0
_lowers = 0
_commas = 0
_digits = 0
for character in row['name']:
if character.isupper(): # check for uppercase values
_uppers = _uppers + 1
if character.islower(): # check for lowercase values
_lowers = _lowers + 1
if character == ',': # check for commas
_commas = _commas + 1
if character.isdigit(): # check for numbers
_digits = _digits + 1
return json.dumps({
'count_uppercase_values': _uppers,
'count_lowercase_values': _lowers,
'count_commas': _commas,
'count_digits': _digits,
})
The cool thing is that you output as many counts as you want and pass it to a Flatten JSON processor to create your columns.
Hi Vincent,
One way to do it is to use a Custom Python Script in Analyze. You can easily implement your logic this way. For example, if you want to test for specific values in a string, you could do the following:
import json
def process(row):
# Initialize counters
_uppers = 0
_lowers = 0
_commas = 0
_digits = 0
for character in row['name']:
if character.isupper(): # check for uppercase values
_uppers = _uppers + 1
if character.islower(): # check for lowercase values
_lowers = _lowers + 1
if character == ',': # check for commas
_commas = _commas + 1
if character.isdigit(): # check for numbers
_digits = _digits + 1
return json.dumps({
'count_uppercase_values': _uppers,
'count_lowercase_values': _lowers,
'count_commas': _commas,
'count_digits': _digits,
})
The cool thing is that you output as many counts as you want and pass it to a Flatten JSON processor to create your columns.