New to Dataiku DSS? Try out our NEW Quick Start Programs today and get onboarded on the product in just one hour! Let's go

Custom Python Model runned with no description

Boris
Level 2
Custom Python Model runned with no description

How can I explore a Custom ML model runned on Dataiku succesfully but with no description at the end ? 

I have tried to deploy the model and import it in a python recipe to understand the configuration (best fit model, parameters,...) but I have a Dataiku object in the recipe, and I don't know the functions for dataiku object.

Here is the Gridsearch/ML model:

from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import GridSearchCV



# Pipeline definition with preprocessing ( Robustscaler)

randomF = {}

randomF['pipeline'] = Pipeline([
    ('scaler', RobustScaler()),
    ('rf', RandomForestClassifier())
])


randomF['hyperparameters'] = {}

randomF['hyperparameters']['rf__n_estimators'] = [50, 100, 150, 200]
randomF['hyperparameters']['rf__criterion']  =  ['gini', 'entropy']
randomF['hyperparameters']['rf__min_samples_split']  = [2 , 5]
randomF['hyperparameters']['rf__max_depth'] =  [20, 5, 10]
randomF['hyperparameters']['rf__min_samples_leaf'] =  [2,3]
randomF['hyperparameters']['rf__bootstrap'] = [True, False]
randomF['hyperparameters']['rf__class_weight']  =  [None, 'balanced', 'balanced_subsample']


randomF['gridsearch'] = GridSearchCV(randomF['pipeline'], 
                                    randomF['hyperparameters'],
                                    scoring = "neg_log_loss",
                                    cv = 5,
                                    n_jobs = -1,
                                    refit = True,
                                    fit_params=None,
                                    iid=True,
                                    verbose=0,
                                    pre_dispatch='2*n_jobs'
                                    )
clf = randomF['gridsearch']
0 Kudos
2 Replies
Boris
Level 2
Author

I finally got the way using the dir commande in a python recipe, the attribute '._clf' give access to the trained model and all the sklearn characteristics. 

 

tgb417
Neuron
Neuron

@Boris ,

That sounds wonderful.  Would you be willing to share an updated code snip-it showing how you solved this issue?

 

--Tom
A banner prompting to get Dataiku DSS