New to Dataiku DSS? Try out our NEW Quick Start Programs today and get onboarded on the product in just one hour! Let's go

BUG: Error introduced in dataiku.core.saved_model

BUG: Error introduced in dataiku.core.saved_model

Looks like an error was introduced in 5.0.1 (it worked in 5.0.0) that prevents dataiku.core.saved_model.Predictor.predict from working properly because it raises an error with Pandas  

ValueError: If using all scalar values, you must pass an index

Full Error message

/home/dataiku/dataiku-dss-5.0.1/python/dataiku/core/saved_model.pyc in predict(self, df, with_input_cols, with_prediction, with_probas, with_conditional_outputs, with_proba_percentile)
591 column_types[k] = np.object
592 pred_df = self._get_prediction_dataframe(dates_handled.astype(column_types), with_prediction, with_probas, with_conditional_outputs,
--> 593 with_proba_percentile)
594 if with_input_cols:
595 return pd.concat([df, pred_df], axis=1)

/home/dataiku/dataiku-dss-5.0.1/python/dataiku/core/saved_model.pyc in _get_prediction_dataframe(self, input_df, with_prediction, with_probas, with_conditional_outputs, with_proba_percentile)
456 with_conditional_outputs, with_proba_percentile):
457 if self.params.model_type == "PREDICTION":
--> 458 pred_df = self._prediction_type_dataframe(input_df, with_prediction, with_probas)
459 self._add_percentiles_and_condoutputs(pred_df, with_proba_percentile, with_conditional_outputs)
460 return pred_df

/home/dataiku/dataiku-dss-5.0.1/python/dataiku/core/saved_model.pyc in _prediction_type_dataframe(self, input_df, with_prediction, with_probas)
488 if prediction_type == "REGRESSION":
489 if with_prediction:
--> 490 pred_df = pd.DataFrame({"prediction": self._clf.predict(X)[0]})
491 else:
492 raise ValueError("Predicting a regression model with with_prediction=False. Oops.")

/home/dataiku/dss/condaenv/lib/python2.7/site-packages/pandas/core/frame.pyc in __init__(self, data, index, columns, dtype, copy)
273 dtype=dtype, copy=copy)
274 elif isinstance(data, dict):
--> 275 mgr = self._init_dict(data, index, columns, dtype=dtype)
276 elif isinstance(data, ma.MaskedArray):
277 import as mrecords

/home/dataiku/dss/condaenv/lib/python2.7/site-packages/pandas/core/frame.pyc in _init_dict(self, data, index, columns, dtype)
409 arrays = [data[k] for k in keys]
--> 411 return _arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype)
413 def _init_ndarray(self, values, index, columns, dtype=None, copy=False):

/home/dataiku/dss/condaenv/lib/python2.7/site-packages/pandas/core/frame.pyc in _arrays_to_mgr(arrays, arr_names, index, columns, dtype)
5494 # figure out the index, if necessary
5495 if index is None:
-> 5496 index = extract_index(arrays)
5497 else:
5498 index = _ensure_index(index)

/home/dataiku/dss/condaenv/lib/python2.7/site-packages/pandas/core/frame.pyc in extract_index(data)
5534 if not indexes and not raw_lengths:
-> 5535 raise ValueError('If using all scalar values, you must pass'
5536 ' an index')

ValueError: If using all scalar values, you must pass an index
0 Kudos
1 Reply

Thank you for your feedback !

We could reproduce the issue. It will be fixed it in the forthcoming 5.0.2 release.

Best regards
0 Kudos
Labels (3)
A banner prompting to get Dataiku DSS