Shapley computation trought Spark
NunziaCoppola
Registered Posts: 3 ✭
Hello everyone,
in Shapley computation using UDF we encouter memory issues or very long processing time.
Tryng to redefine the process with pySpark recipe we use the method "GBTClassificationModel.load" from the library "from pyspark.ml.classification import GBTClassificationModel" in custom code.
Unfortunately the load method takes too long (more than 4h) to upload the model.
Do you know how to speed up the process or work directly with the model without loading it?
I leave attached the code snippet
Tagged:
Answers
-
Turribeach Dataiku DSS Core Designer, Neuron, Dataiku DSS Adv Designer, Registered, Neuron 2023 Posts: 1,883 Neuron
Hi, can you please paste the code in a Code Block (look for the </> icon) so it can be copy/pasted? Thanks
-
from pyspark.sql import SparkSession from pyspark import SparkContext, SparkConf from pyspark.ml.classification import GBTClassificationModel import pyspark.sql.functions as F from pyspark.sql.types import * import pandas as pd import dataiku import json from pyspark.sql import SQLContext import gzip import dataikuscoring import os.path import os import sys from dataikuscoring import load_model os.environ['PYSPARK_PYTHON'] = sys.executable os.environ['PYSPARK_DRIVER_PYTHON'] = sys.executable Project='DKU_TUTORIAL_BASICS_102_1' FOLDER_ID = 'EnO4P0lZ' REPO = dataiku.Folder(FOLDER_ID) list_files = REPO .list_paths_in_partition() with REPO.get_download_stream(list_files[0]) as stream: data = stream.read() dataset = dataiku.Dataset("ew_sconfini_scadutiprivati_prepared") df = dataset.get_dataframe() gbt = GBTClassificationModel.load("/DKU_TUTORIAL_BASICS_102_1/EnO4P0lZ/privati-ima_01-weights/model/dss_pipeline_model")